
EvoHyp - A Java Toolkit for Evolutionary
Algorithm Hyper-Heuristics

Nelishia Pillay
School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal
KwaZulu-Natal, South Africa
Email: pillayn32@ukzn.ac.za

Derrick Beckedahl
School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal
KwaZulu-Natal, South Africa

Email: d.beckedahl@gmail.com

Abstract—Hyper-heuristics is an emergent technology that has
proven to be effective at solving real-world problems. The two
main categories of hyper-heuristics are selection and generation.
Selection hyper-heuristics select existing low-level heuristics while
generation hyper-heuristics create new heuristics. At the incep-
tion of the field single point searches were essentially employed by
selection hyper-heuristics, however as the field progressed evolu-
tionary algorithms are becoming more prominent. Evolutionary
algorithms, namely, genetic programming, have chiefly been used
for generation hyper-heuristics. Implementing evolutionary algo-
rithm hyper-heuristics can be quite a time-consuming task which
is daunting for first time researchers and practitioners who want
to rather focus on the application domain the hyper-heuristic will
be applied to which can be quite complex. This paper presents
a Java toolkit for the implementation of evolutionary algorithm
hyper-heuristics, namely, EvoHyp. EvoHyp includes libraries for
a genetic algorithm selection hyper-heuristic (GenAlg), a genetic
programming generation hyper-heuristic (GenProg), a distributed
version of GenAlg (DistrGenAlg) and a distributed version of
GenProg (DistrGenProg). The paper describes the libraries and
illustrates how they can be used. The ultimate aim is to provide
a toolkit which a non-expert in evolutionary algorithm hyper-
heuristics can use. The paper concludes with an overview of
future extensions of the toolkit.

I. INTRODUCTION

Hyper-heuristics [1] provide an alternative approach to
solving problems by exploring a heuristic space rather than
a solution space which is typical of most optimization tech-
niques. Exploring a heuristic space which maps to a solution
space has been shown to be more effective for solving var-
ious real-world problems than searching the solution space
directly. Hyper-heuristics either select low-level heuristics or
generate new low-level heuristics. The low-level heuristics
can be constructive or perturbative. Constructive heuristics
are used to create solutions to a problem while perturbative
heuristics are used to improve an existing solution. Hence,
the four types of hyper-heuristics are selection constructive,
selection perturbative, generation constructive and generation
perturbative.

Selection constructive hyper-heuristics select which con-
structive heuristic to choose at each point in creating a
solution to the problem. Initially, single point searches such
as tabu search were employed for selection [2] but as the
field developed evolutionary algorithms have proven to be
effective [3]. Similarly, selection perturbative hyper-heuristics

choose which perturbative heuristic to apply at each point
in improving a solution that is created either randomly or
using a constructive heuristic. A selection perturbative hyper-
heuristic can employ single point or multipoint search to
choose low-level perturbative heuristics. In the case of the
former the hyper-heuristic is composed of two components,
one for heuristic selection and the other for move accep-
tance. In the case of selection perturbative hyper-heuristics
performing multipoint search, by the nature of multipoint
searches such as evolutionary algorithms the approach per-
forms both the processes of heuristic selection and move
acceptance and there is no need for separate components.
The evolutionary algorithm is applied in the same way as for
selection constructive hyper-heuristics with the only difference
being that the low-level heuristics are perturbative. Generation
hyper-heuristics use genetic programming [4] to create new
low-level heuristics. Generation construction hyper-heuristics
induce new low-level heuristics comprised of existing low-
level heuristics or components thereof, problem attributes
and arithmetic and conditional operators. On the other hand
generation perturbative hyper-heuristics produce new low-level
perturbative heuristics or move operators. However, the field
of generation perturbative hyper-heuristics is still in its infancy
with initial attempts combining existing perturbative low-level
heuristics with conditional operators.

To put this in context consider the examination timetabling
problem [5]. Examinations have to scheduled in timetable
periods so as to meet all hard constraints of the problem
and minimize the number of soft constraint violations. The
constructive heuristics for this problem are used to order
the examinations according to difficulty of scheduling and
allocate them in this order. An example of a heuristic is
the number of available timeslots available on the timetable
at a given point in construction to schedule the examination
in. This heuristic is referred to as the saturation degree and
the examinations are sorted in ascending order according to
the heuristic and scheduled in order. An example of another
constructive heuristic is largest enrolment, i.e. the number of
students sitting the examination. In this case the examinations
are sorted in descending order according to this value. A
selection constructive hyper-heuristic selects a heuristic to
use at each point in the timetable construction process. Low-

level pertubative heuristics for this domain include swapping
individual examinations, swapping timetable periods, swap-
ping subset of examinations, amongst others. Similarly, a
selection perturbative hyper-heuristic selects a heuristic to
apply at each point of improving a timetable, i.e. reducing
the hard and/or soft constraint cost a an initial timetable
which is created randomly or using a constructive heuristic. A
generation constructive hyper-heuristic will be used to create
a new heuristic for the domain of examination timetabling
by combining arithmetic operators and conditional operators
with problem attributes, e.g. the number of potential clashes
an examination can be involved in, the number of students
sitting an examination.

Evolutionary algorithms have been employed by both se-
lection and generation hyper-heuristics, however the imple-
mentation of evolutionary algorithm hyper-heuristics can be a
tedious and daunting task. This paper presents a Java toolkit,
EvoHyp, for the implementation of evolutionary algorithm
hyper-heuristics. This will enable researchers and practition-
ers to focus on implementation of the problem domain.
Existing toolkits for hyper-heuristics such as HyFlex and
HY PERION2 [6], [7] do not alleviate the user from the task
of implementing the evolutionary algorithm hyper-heuristic.
HyFlex is a Java toolkit that supports the implementation of
selection perturbative hyper-heuristics. The toolkit provides
methods for creating an initial solution, methods for calcula-
tion of the objective function and low-level perturbative heuris-
tics for six combinatorial optimization problems, namely,
the maximum satisfiability problem, flow-shop scheduling,
one dimensional bin packing, personnel scheduling, travelling
salesman and vehicle routing. The user is required to imple-
ment the selection perturbative hyper-heuristic to solve the
six problems. HY PERION2 allows the user to perform a
trace of the implemented metaheuristic or hyper-heuristic in
solving a particular problem, enabling the user to understand
how the solution is arrived at. Hence, the purpose of EvoHyp
is different from existing toolkits. The user can focus on
the implementation of the application domain and use the
evolutionary algorithm hyper-heuristics as a black-box to solve
the problem at hand.

The paper presents an overview of EvoHyp in the following
section. Section III presents the genetic algorithm selection
hyper-heuristic and section IV the genetic programming gen-
eration hyper-heuristic. The distributed versions of the genetic
algorithm and genetic programming hyper-heuristics are pre-
sented in section V. The paper concludes by outlining future
extensions of the EvoHyp toolkit.

II. OVERVIEW OF EvoHyp

As illustrated in Fig. 1 EvoHyp 1 contains four libraries
or packages, namely, GenAlg, GenProg, DistrGenAlg and
DistrGenProg.

1A link to the EvoHyp website and example code will be included in the
camera-ready version of the paper.

Fig. 1. EvoHyp toolkit

The GenAlg library allows for the implementation of
genetic algorithm selection hyper-heuristics. Selection con-
structive and selection perturbative hyper-heuristics can be
implemented using GenAlg. DistrGenAlg is the distributed
version of GenAlg. Implementation of the genetic algorithm
is distributed over a multicore architecture. Fig. 1 illustrates
the classes in each library that forms the interface between
EvoHyp and the problem domain. The GenAlg library contains
the GenAlg class which implements the genetic algorithm
selection hyper-heuristic. Similarly, DistGenAlg contains the
DistrGenAlg class which implements the distributed genetic
algorithm selection hyper-heuristic which is distributed over
a multicore architecture. Both packages include the abstract
classes InitialSoln and ProblemDomain which must be imple-
mented by the user to link the problem domain and genetic
algorithm hyper-heuristics.

GenProg allows for implementation of genetic program-
ming generation hyper-heuristics. Given the infancy of the
research on generation perturbative hyper-heuristics at this
point, a toolkit for generation perturbative hyper-heuristics
is not of benefit and more research in this area is needed
before a library can be made available. Hence, GenProg only
caters for the implementation of generation constructive hyper-
heuristics. DistrGenProg is the distributed version of GenProg
which distributes the genetic programming algorithm over a
multicore architecture.

The following sections describe the evolutionary algorithms
provided by each of the libraries and illustrate how the libraries
can be used.

III. GenAlg

This section describes the GenAlg library. The library can
be used to implement selection constructive or selection per-
turbative hyper-heuristics. Section III-A describes the genetic
algorithm hyper-heuristic and section III-B illustrates how the
library can be used.

A. Genetic Algorithm Hyper-Heuristic

The GenAlg library implements the generational genetic
algorithm [8] depicted in 1.

Each chromosome is a combination of characters, with each
character representing a low-level constructive or perturbative
heuristic. For example, efab, where e, f, a and b represent
low-level heuristics. The heuristics are applied from left to
right, to either construct a solution in the case of selection
constructive hyper-heuristics or improve a solution in the

Algorithm 1 Generational genetic algorithm
1: Create an initial population
2: repeat
3: Evaluate the population
4: Select parents
5: Apply genetic operators
6: until termination criterion is met

case of selection perturbative hyper-heuristics. The user must
specify the characters representing the low-level heuristics.
Each chromosome is created by randomly selecting characters
representing low-level heuristics until a specified length is
reached. The length of each chromosome is randomly chosen
to be between 1 and a maximum chromosome length specified
by the user.

Each chromosome is passed to a method defined by the
user as part of the problem domain, namely, evaluate to
calculate its fitness. Tournament selection [8] is used to select
parents which the mutation and crossover operators are applied
to.

The mutation operator randomly selects a mutation point
and the character at that position in the chromosome is
replaced with a randomly created substring. The length of
the substring is randomly chosen to be in the range 1 to
the maximum length specified by the user as the mutation
length. The crossover operator randomly selects two points in
each of the parents and the parent chromosomes are crossed
over at these points to produce two offspring. The fitter of
the two offspring is returned as the result of the operator.
If the user has specified a limit on the offspring size, the
heuristic combination is pruned to be the maximum specified
offspring length. The population of each generation is created
by applying mutation and crossover as specified by the genetic
operator application rates provided by the user. For example,
if the mutation rate is 40% and the crossover rate 60%, 40%
of the population will be created using mutation and the
remaining 60% using crossover.

The generational genetic algorithm terminates when a max-
imum number of generations is reached.

The following section illustrates how GenAlg can be used
to solve a problem.

B. Using GenAlg

GenAlg enables the user to focus on implementing the
problem domain. Fig. 1 illustrates the interaction between
GenAlg and the problem domain.

Fig. 2. Interaction between GenAlg and the problem domain

As is illustrated in the figure, the user needs to provide
a list of characters representing the low-level constructive
or perturbative heuristics. The genetic algorithm evolves a
population of heuristic combinations. The user is required to
implement the problem domain including methods for con-
structing a solution or improving a solution using the heuristic
combination, determining the fitness of a heuristic combination
and determining which of two heuristic combinations are
fitter. In implementing the problem domain the user has to
implement two abstract classes, namely, ProblemDomain and
InitialSolution.

The steps involved in implementing a genetic algorithm
hyper-heuristic using GenAlg are:

1) Implement the abstract class InitialSolution for the prob-
lem to be solved.

2) Implement the abstract class ProblemDomain for the
problem to be solved.

3) Use the class GenAlg to implement a genetic algorithm
selection hyper-heuristic to solve the problem.

These steps are described below.

Implementing the InitialSoln class

The purpose of this class is to create a solution using
the heuristic combination. The class, e.g. MySoln extends
InitialSoln. In addition to the methods for solving the problem
the InitialSoln class must implement the following methods
for the particular problem domain:

• public int fitter(InitialSoln other)
- This method must be overridden in the concrete
implementation. If the heuristic combination in the
current instantiation is fitter than other a value of 1
must be returned, if the fitness is the same a value of
0 must be returned and if other is fitter a value of -1
must be returned. An example of an implementation of
the fitter function is :

p u b l i c i n t f i t t e r (I n i t i a l S o l n o t h e r)
{

i f (o t h e r . g e t F i t n e s s () < f i t n e s s)
r e t u r n 1 ;

e l s e i f (o t h e r . g e t F i t n e s s () > f i t n e s s)
r e t u r n −1;

e l s e
r e t u r n 0 ;

}
In this example fitness is a data element of the class.

• abstract public double getFitness() -
This is an abstract class that must be implemented. It
essentially returns the fitness of the heuristic combination.

• abstract public Object getSoln() - This
method must return the solution created using the heuris-
tic combination. Note that the return type is Object so

the user can define the type of the solution created using
the heuristic combination. For example, in solving the
university course timetabling problem the solution may
be a Timetable, however for the travelling salesman
problem the solution would be a Tour.

• abstract public void setHeuCom(String
heuCom) - This is a set method that stores the heuristic
combination heuCom.

• abstract public String getHeuCom() - This
method returns the heuristic combination heuCom.

Implementing the ProblemDomain class

The ProblemDomain class serves as an interface between
the InitialSoln and GenAlg class. The concrete class
extends ProblemDomain. At least the following abstract
method evaluate must be implemented in the concrete
class:

public InitialSoln evaluate(String heuCom)

This method must evaluate the heuristic combination
(heuCom) by using it to create a solution and calculating
the fitness of the heuristic combination. The methods for
creating a solution can be included in the implementation of
this class or the implementation of InitialSoln. An example of
an evaluate method is depicted below:

p u b l i c ComOptSoln e v a l u a t e (S t r i n g heuCom)
{

ComOptSoln s o l n = new ComOptSoln () ;
s o l n . setHeuCom (heuCom) ;
s o l n . c r e a t e S o l n () ;

r e t u r n s o l n ;
}

ComOptSoln is the concrete implementation of the abstract
class InitialSoln. In the example the method for creating the
solution using the heuristic combination is included in the
ComOptSoln class. The evaluate method calls the set
method to store the heuristic combination in the instance of
ComOptSoln and evokes the method to create the solution
using the heuristic combination.

Using the GenAlg class

In order to implement a genetic algorithm selection hyper-
heuristic an instance of the GenAlg class must be created.
A seed and string of characters representing the heuris-
tics must be passed to an instantiation of the class via
the constructor: public GenAlg(long seed, String
heuristics).

The user is required to specify the parameter values to be
used by the genetic algorithm, namely, population size, number
of generations, tournament size, initial chromosome length,
mutation length and offspring length. If there is no limit on

the size of the offspring produced by the genetic operators a
-1 must be specified for the offspring length. The parameter
values can be set by means of a file containing the parameter
values or setting each parameter individually using the set
methods provided by GenAlg.

GenAlg uses the evaluate method defined in the im-
plementation of the abstract method ProblemDomain to cal-
culate the fitness of each element of the population. An
instance of the concrete implementation of the ProblemDo-
main class must be passed to the GenAlg class using the
setProblem method in the GenAlg class: public void
setProblem(ProblemDomain problem). To imple-
ment the genetic algorithm hyper-heuristic the evolve
method from the GenAlg class must be evoked: public
InitialSoln evolve(). This method returns the best
chromsome evolved over a genetic algorithm run of n genera-
tions. The method returns an instance of InitialSoln. Suppose
that ComOptSoln is a concrete implementation of InitialSoln
and ComOptProb is a concrete implementation of the Prob-
lemDomain class, an example of code to implement a genetic
algorithm selection hyper-heuristic is listed below:

long seed = System . c u r r e n t T i m e M i l l i s () ;
S t r i n g h e u r i s t i c s =new S t r i n g (” s lw ”) ;
GenAlg schh = new GenAlg (seed , h e u r i s t i c s) ;
schh . s e t P a r a m e t e r s (” P a r a m e t e r s . t x t ”) ;
ComOptProb problem = new ComOptProb () ;
schh . s e t P r o b l e m (problem) ;
ComOptSoln s o l u t i o n =
(ComOptSoln) schh . e v o l v e () ;

System . o u t . p r i n t l n (” Bes t S o l u t i o n ”) ;
System . o u t . p r i n t l n (”−−−−−−−−−−−−−−”);
System . o u t . p r i n t l n (s o l u t i o n . g e t F i t n e s s ()) ;
System . o u t . p r i n t l n (s o l u t i o n . getHeuCom ()) ;
d i s p l a y S o l u t i o n (s o l u t i o n . g e t S o l n ()) ;

The current system time is used as the seed. Three heuristics
are used for this problem represented by s, l and w. The param-
eters for the genetic algorithm are specified in the file Param-
eters.txt. An instance of ComOptProb is created and passed
to an instance of GenAlg. The evolve method is evoked
to implement the selection hyper-heuristic and the returns
the best performing heuristic combination and corresponding
solution in solution which in this case is an instance of
ComOptSoln. The methods getFitness, getHeuCom and
getSoln are used to get the fitness, heuristic combination
and solution respectively.

IV. GenProg
The GenProg library can be used to implement generation

constructive hyper-heuristics. The following section describes
the genetic programming hyper-heuristic and section IV-B
illustrates how GenProg can be used for a problem domain.

A. Genetic Programming Hyper-Heuristic
Genetic programming is used to induce new low-level

constructive heuristics. The generational algorithm depicted

in Algorithm 1 is implemented. However, each element of the
population is a parse tree representing a heuristic.

The evolved heuristic can be an arithmetic function or an
arithmetic rule. In the case of the an arithmetic function, the
function set is comprised of the standard arithmetic functions
namely, addition, subtraction, multiplication and division. The
division operator is protected division which returns a value
of 1 if the denominator is zero. In addition to these operators,
the function set for generating heuristic functions include the
an if-then-else operator and the relational operators, less than,
greater than, less than equal to, greater than equal to, equal
to and not equal to. The relational operators are only used
in creating the first argument of the if-then-else operator.
The terminals are problems attributes specified by the user.
The user has to specify a list of characters representing the
attributes for the problem.

The grow method [4] is used to create each element of the
initial population. The root of the tree is randomly selected
from the function set. The nodes at the maximum initial depth
specified by the user are randomly selected from the terminal
set. The nodes at the remaining depths are randomly selected
from both the function and terminal sets.

The fitness of each heuristic is calculated by passing the
heuristic to the method defined by the user as part of the
problem domain, evaluate to use the heuristic to create
a solution to the problem. Tournament selection is used to
choose parents to apply the genetic operators to.

Mutation and crossover are used to create the offspring
of each generation. The standard mutation operator is used
[4]. This operator randomly selects a mutation point in the
parent. The subtree rooted at the mutation point is replaced
by a randomly created subtree. The depth of the subtree
is limited to the maximum mutation depth specified by the
user. The crossover operator randomly chooses two crossover
points in both of the parents and the subtrees rooted at these
points are swapped to produce two offspring. If the offspring
produced by the genetic operators exceed the maximum off-
spring depth specified by the user the offspring are pruned by
replacing function nodes with randomly selected terminals at
the maximum permitted depth. As in the case of GenAlg the
population of each generation is created by applying mutation
and crossover as specified by the genetic operator application
rates provided by the user. For example, if the mutation rate
is 40% and the crossover rate 60%, 40% of the population
will be created using mutation and the remaining 60% using
crossover.

The generational genetic programming algorithm terminates
when the number of generations specified by the user has been
reached.

The following section describes how GenProg can be ap-
plied to a problem domain.

B. Using GenProg

Fig. 2 illustrates the interaction between the GenProg im-
plementation and the problem domain implementation.

Fig. 3. Interaction between GenProg and the problem domain

The user is required to specify a list of characters represent-
ing the attributes of the problem. GenProg creates low-level
constructive heuristics of type Node. As part of the imple-
mentation of the problem domain the user has to implement
methods that use a heuristic evolved by GenProg to solve
the problem and calculate the fitness of the evolved heuristic.
The GenProg library provides the Evaluate class to calculate
the value the heuristic evaluates to given the attribute values
by the user. The fitness of each heuristic is calculated using
the evaluate method defined by the user as part of the
problem domain. The fitness of the heuristic is calculated
by using it to create a solution to the problem. Concrete
implementations of the abstract classes Solution and Problem
must be implemented as part of the problem domain by the
user.

The steps involved in implementing a generation construc-
tive hyper-heuristic using GenProg are:

• Implement the abstract class Solution for the problem to
be solved.

• Implement the abstract class Problem for the problem to
be solved.

• Use GenProg to implement a generation constructive
hyper-heuristic to create a heuristic for the problem
domain.

These steps are described below:

Implementing the Solution class

The purpose of this class is to create a solution using
the heuristic. The class stores the heuristic and the solution
created using it. The concrete class must extend Solution.
In implementing the Solution abstract class the following
methods should be implemented:

• abstract public int fitter(Solution
other) - This method determines whether the heuristic
in the current instantiation is fitter than other or not. If it
is fitter a value of 1 is returned. If other is fitter a value
of -1 is returned, otherwise a value of 0 is returned.

• abstract public double getFitness() -
Returns the fitness of the heuristic.

• abstract public Object getSoln() - Returns
the solution created using the heuristic. The type of the
solution is Object and can be defined to be any type
required by the user.

• abstract public void
setHeuristic(Object heuristic) - Sets

the heuristic produced by GenProg to be used to solve
the problem.

• abstract public Object getHeuristic() -
This method returns the heuristic to solve the problem.

Implementing the Problem class

The Problem class is essentially an interface between
the concrete implementation of the Solution class and the
GenProg class. The Problem class requires the following
abstract methods to be implemented:

• public Solution evaluate(Object
heuristic) - This method takes the heuristic as
input and must use the heuristic to solve the problem
at hand and return the solution as instance of the type
Solution. The type of the heuristic has been left as
Object for possible future expansion, however in the
current version of GenProg heuristics are of the type
Node. The package provides the Evaluate class which
provides the user with methods to interpret the heuristic
given attribute values and obtain the heuristic value. An
example of the evaluate function is depicted below:

p u b l i c S o l u t i o n e v a l u a t e (O b j e c t heu)
{

ComOptSoln s o l n = new ComOptSoln () ;
s o l n . s e t H e u r i s t i c (heu) ;
s o l n . c r e a t e S o l n (a t t r i b u t e s) ;

r e t u r n s o l n ;
}

In this example the methods for creating a solution
are implemented in the concrete implementation of the
Solution class, ComOptSoln. The evaluate method
creates an instance of the ComOptSoln class and passes
it the heuristic to solve the problem. The createSoln
method in the ComOptSoln class is evoked to create a
solution using the heuristic and the solution is returned.

• public void setAttribs(String attribs)
- This method allows the user to set the attributes for
the problem domain. The user is required to specify a
string of characters, with each character representing an
attribute.

Using GenProg

The genetic programming generation constructive hyper-
heuristic is implemented by first creating an instance of
the GenProg class. The GenProg constructor takes three
arguments: public GenProg(long seed,String
attributes,int heuType). The first argument is the
seed value to be used by the random number generator, the
second the problem attributes in the form of a string with
each character representing an attribute and the last argument

is an integer value indicating whether an arithmetic function
or arithmetic rule should be evolved. If the last argument is 0
an arithmetic function is evolved and if it is 1 an arithmetic
rule.

As in the case of GenAlg the parameters for the genetic
programming algorithm needs to be set using either the
setParameters method and supplying a file with the
parameters or setting these individually using the set method
for each parameter provided by GenProg. The parameter
values that must be set include population size, number of
generations, tournament size, initial tree depth, mutation depth,
crossover application rate, mutation application and maximum
offspring depth. If there is no limit on the depth of the
offspring created by the genetic operators, the value of the
offspring depth must be set to be -1.

GenProg calculates the fitness of each element of the
population by calling the evaluate method from an
instance of the concrete implementation of the Prob-
lem class. This instance must be passed to the Gen-
Prog class using the setProblem method: public void
setProblem(Problem problem).

The evolve method must be evoked to implement the
generation constructive hyper-heuristic to evolve a heuristic for
the problem domain: public Solution evolve(). This
method returns an instance of type Solution which stores both
the heuristic and the solution created using it. Example code
for implementing a generation constructive hyper-heuristic is
included below:

ComOptProb problem = new ComOptProb () ;
l ong seed = System . c u r r e n t T i m e M i l l i s () ;
S t r i n g a t t r i b s =new S t r i n g (” abc ”) ;
problem . s e t A t t r i b s (a t t r i b s) ;
GenProg gchh = new GenProg (seed , a t t r i b s , 1) ;
gchh . s e t P a r a m e t e r s (” P a r a m e t e r s . t x t ”) ;
gchh . s e t P r o b l e m (problem) ;
ComOptSoln s o l = (ComOptSoln) gchh . e v o l v e () ;

System . o u t . p r i n t l n (” Bes t S o l u t i o n ”) ;
System . o u t . p r i n t l n (”−−−−−−−−−−−−−−”);
System . o u t . p r i n t l n (s o l . g e t F i t n e s s ()) ;
System . o u t . p r i n t (” H e u r i s t i c : ”) ;
p r i n t I n d ((Node) s o l . g e t H e u r i s t i c ()) ;
System . o u t . p r i n t l n () ;
System . o u t . p r i n t l n (” S o l u t i o n : ”) ;
d i s p l a y S o l u t i o n ((A r r a y L i s t) s o l . g e t S o l n ()) ;

In this example the concrete implementation of the Solution
class is ComOptSoln. An instance of the GenProg class gchh
is created and passed a seed, the problem attributes, the param-
eters via a file and an instance of the concrete implementation
of Problem, ComOptProb. The current system time is used
as the seed and the problem attributes are a, b and c. The 1
passed as the last argument to the constructor indicates that
GenProg must generate the heuristic as an arithmetic rule.
The evolve method returns a solution of type ComOptSoln

which includes both the solution to the problem and the best
performing heuristic used to create it.

During the evolution process the GenProg class uses the
evaluate method to calculate the fitness of each heuristic,
i.e. the element of the population. The heuristic of type
Node is passed to the evaluate method and must be
used to solve the problem. This heuristic is then passed to
the concrete implementation of the Solution class, in the
example comOptSoln which contains the methods to create a
solution to the problem using the heuristic. In order to use
the heuristic to solve the problem it must be interpreted with
the current values of the attributes provided by the user. The
GenProg library provides the Evaluate class for this purpose.
The class provides the following methods:

• public Evaluate(String
attributes,double attributeVals[] -
The constructor for the class requires the user to specify
the attributes and values of the attributes.

• public double eval(Node op) - This method
calculates the heuristic value given the heuristic produced
by GenProg. This allows the user to evaluate the heuristic
with attributes values externally as part of the problem
domain.

In the above example this class is instantiated in the instance
of the ComOptSoln class to create a solution. The heuristic of
type Node is passed to the instance of the ComOptSoln class
via the evaluate method as indicated in the code above for
the evaluate method. The method in the instance of the
ComOptSoln which solves the problem passes the heuristic to
an instance of the Evaluate class and evokes the eval method
to get the corresponding heuristic value for the heuristic.

V. DistrGenAlg AND DistrGenProg

As the runtimes for evolutionary algorithm hyper-heuristics
can be high for certain problem domains, the toolkit provides
a distributed version of GenAlg and GenProg. In both the
distributed versions the implementation of the evolutionary al-
gorithm is distributed over a multicore architecture as follows:

• The task of creating the initial population is distributed
over the number of specified cores. Subpopulations are
created and evaluated on each core.

• The process of regeneration is distributed over the avail-
able cores. Subpopulations are created on each core by
applying genetic operators and evaluating the offspring.

The implementation of the hyper-heuristics are the same
as described in sections III and IV for GenAlg and GenProg
respectively with the only difference being that the number
of available cores to use must be specified when instantiating
an instance of each class:

public DistrGenAlg(long seed, String
heuristics,int noOfCores)

public GenProg(long seed,String
attributes,int heuType)

VI. CONCLUSION

This paper has presented a Java toolkit for the implementa-
tion of selection constructive, selection perturbative and gen-
eration constructive evolutionary algorithm hyper-heuristics.
The evolutionary algorithms for the hyper-heursitcs have been
presented and how hyper-heuristics can be implemented using
the toolkit has been illustrated. Future extensions of the toolkit
will be to include a steady-state genetic algorithm option
for GenAlg and DistGenAlg. While genetic programming has
chiefly been used in generation hyper-heuristics as the field
is advancing grammatical evolution, a variation of genetic
programming, is gaining popularity. EvoHyp will be extended
to include a grammatical evolution option for GenProg. The
ultimate aim of the EvoHyp toolkit is to provide non-expert
researchers and practitioners with a tool that does not require
detailed knowledge of evolutionary algorithm hyper-heuristics
to use. However, in the current version the user is still required
to provide parameter values for the evolutionary algorithms
and hence perform parameter tuning. Automated parameter
tuning of the evolutionary algorithms will be incorporated
into future versions EvoHyp. Finally, as the field of genera-
tion perturbative hyper-heuristics develops further, the toolkit
will be extended to include genetic programming generation
perturbative hyper-heuristics.

REFERENCES

[1] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal of the
Operational Research Society, vol. 64, no. 12, pp. 1695–1724, 2013.

[2] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A graph-
based hyper-heuristic for educational timetabling problems,” European
Journal of Operational Research, vol. 176, pp. 177–192, 2007.

[3] N. Pillay, “Evolving hyper-heuristics for the uncapacited examination
timetabling problem,” Journal of the Operational Research Society,
vol. 63, pp. 47–58, 2012.

[4] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, 1st ed. MIT, 1992.

[5] N. Pillay, “A review of hyper-heuristics for educational timetabling,”
Annals of Operations Research, vol. 239, no. 1, pp. 3–38, 2016.

[6] P. Ryser-Welch and J. F. Miller, “A review of hyper-heuristic frameworks,”
in Proceedings of the Evo20 Workshop, AISB 2014, 2014.

[7] N. Pillay, “Tutorial: An overview of evolutionary algorithm hyper-
heuristics,” 2015 IEEE Congress on Evolutionary Computation
(CEC 2015), http://www.cs.usm.maine.edu/ congdon/Confer-
ences/CEC2015/Pillay.CEC2015.tutorial.pdf, May 2015.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing, 1989.

